On Number of Lindenbaum's Oversystems of Propositional and Predicate Calculi
نویسنده
چکیده
0. The present paper is a continuation of [6] and [7]. Thus the content of this paper is the following. At first we establish properties of systems S n and S2∗ n , where systems S 2 n and S 2∗ n are extensions of Rasiowa-S lupecki’s systems Sn and S∗ n. Then we shall show that for every cardinal number m there exist a system ST4 m of propositional calculus and a system SP 4 m of predicate calculus such that the system ST4 m has exactly m Lindenbaum’s oversystems and the system SP4 m has exactly m Lindenbaum’s oversystems, where 1 ≤ m ≤ 2א0 .
منابع مشابه
Automated Reasoning I∗
Preliminaries abstract reduction systems well-founded orderings Propositional logic syntax, semantics calculi: DPLL-procedure, . . . implementation: 2-watched literals, clause learning First-order predicate logic syntax, semantics, model theory, . . . calculi: resolution, tableaux, . . . implementation: sharing, indexing First-order predicate logic with equality term rewriting systems calculi: ...
متن کاملGothenburg Monographs in Linguistics 13 on the Semantics of Propositional Attitude Reports
This is a study on the truth-conditional semantics of propositional attitude attribution statements. It is suggested that attitude contents should be characterized in terms of abstract concepts, which are connected by way of a number of basic logical relations derived from a version of Quinean predicate-functor logic. This allows us to handle all logical relationships definable by first-order p...
متن کاملModal Kleene Algebra and Applications — A Survey —
Modal Kleene algebras are Kleene algebras with forward and backward modal operators, defined via domain and codomain operations. They provide a concise and convenient algebraic framework that subsumes various popular calculi and allows treating quite a number of areas. We survey the basic theory and some prominent applications. These include, on the system semantics side, wlp and wp calculus, P...
متن کاملPropositional Calculus and Realizability
In [13], Kleene formulated a truth-notion called "readability" for formulas of intuitionistic number theory(1). David Nelson(2) showed that every number-theoretic formula deducible in the intuitionistic predicate calculus(3) (stated by means of schemata, without proposition or predicate variables) from realizable number-theoretic formulas is realizable. In particular, then, every formula in the...
متن کاملThe Axioms of Team Logic
A framework is developed that extends calculi for propositional, modal and predicate logics to calculi for team-based logics. This method is applied to classical and quantified propositional logic, first-order logic and the modal logic K. Complete axiomatizations for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL and the dependence-atom-free fragmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Log. Q.
دوره 31 شماره
صفحات -
تاریخ انتشار 1985